

February 2026

Water Quality Report for 2025

Drinking Water Source

Tate Monroe Water Association's (TMWA) drinking water is received from the Ohio River Valley Aquifer. Eleven (11) vertical wells and one (1) collector well are located along the Ohio River at Clermontville and near Moscow.

The aquifer that supplies drinking water to the TMWA has a high susceptibility to contamination, due to the nature of the aquifer in which the drinking water wells are located and the existing potential contaminant sources identified. This does not mean that this well field will become contaminated; only that conditions are such that the groundwater could be impacted by potential contaminant sources. Future contamination may be avoided by implementing protective measures. Please dispose of hazardous chemicals in the proper manner. Protecting our drinking water source is the responsibility of all area residents. By working together we can ensure an adequate safe supply for future generations.

Please contact Kevin Newberry at 513-734-9616 if you would like a copy of the Source Water Assessment Plan.

TMWA also has emergency connections with adjoining utilities which is only used to supplement the supply if needed for drought conditions or when sections of the system are being repaired.

Substances in Source Water

The sources of drinking water (both tap water and bottled water) includes rivers, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife;
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses;
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems;
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, USEPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily pose a health risk. More information about the contaminants and potential health effects can be obtained by calling the Safe Drinking Water Hotline at (1-800-426-4791)

Who Needs to Take Special Precautions

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA and the Center for Disease Control guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Educational Information

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. TMWA is responsible for providing high quality drinking water and does treat the water for corrosion control to minimize the amount of lead that may leach into the drinking water from home plumbing, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

Our distribution system has no lead, galvanized requiring replacement, or lead status unknown service lines. To determine this, we used the following sources: construction and plumbing codes, permits, historic records, and visual inspections that indicate the service line materials.

You can view more specific information about the status of your service line, as well as a complete inventory of service line materials in the distribution system, at our Administrative office. To schedule an appointment, please contact our office.

License to Operate (LTO) Status, Meetings, and Contact Information

We have a current, unconditioned license to operate our water system.

We want our members to be informed relative to their water utility. Regular meetings are held the second Tuesday of each month at 6:30 PM at the main office building located at 2599 S.R. 232, New Richmond. If you, as a member, wish to be placed on the agenda, call 513-734-9612 so that a time can be reserved.

For more information on your drinking water, contact Kevin Newberry, Plant Operations Manager at 513-734-9616 or knewberry@tatemonroe.com.

TMWA Meets or Exceeds All State and Federal Health Standards

The EPA requires regular sampling to ensure drinking water safety. TMWA conducts sampling for bacteria, inorganic, radiological, synthetic organic, and volatile organic contaminants. Most of these contaminants were not detected in the TMWA water supply. The Ohio EPA requires us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though accurate, are more than one year old.

The tables on the following pages show the results of our monitoring for the period of January 1st to December 31st, 2025.

REGULATED CONTAMINATES
**Idlett Hill Treatment Plant
New Richmond, Ohio**

Contaminant (Units)	MCL	MCLG	Level Found	Range of Detection	Violation	Year Sampled	Typical Source of Contaminants
Fluoride (ppm)	4.0	4.0	1.11	0.84—1.14	No	2025	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate (ppm)	10	10	0.11	na	No	2025	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Barium (ppm)	2	2	0.04	na	No	2023	Discharge of drilling waste; discharge from metal refineries; erosion of natural deposits

**Freedom Crossing Treatment Plant
Moscow, Ohio**

Fluoride (ppm)	4.0	4.0	1.03	0.78 - 1.08	No	2025	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate (ppm)	10	10	0.26	na	No	2025	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Barium (ppm)	2	2	0.018	na	No	2023	Discharge of drilling waste; discharge from metal refineries; erosion of natural deposits
Gross Alpha (pCi/L)	15	0	3.5	na	No	2020	Erosion of natural deposits

Distribution¹

TTHMs (ppb) [Total Trihalomethanes]	80	na	24.05	6.3 - 41.8	No	2025	By-product of drinking water chlorination.
HAA5 (ppb) [Haloacetic Acid]	60	na	4	0 - 8	No	2025	
Total Chlorine (ppm)	MRDL=4.0	MRDLG=4.0	1.19	1.08 - 1.34	No	2025	Water additive used to control microbes
Lead (ppb) Compliance Period 6/1/2023-9/30/2023	AL=15 (the 90th percentile must be less than 15 ppm)	0.0	0 ppb at 90th percentile	nd - 6.5	No	2023	Corrosion of household plumbing systems is a source of lead and copper contamination; erosion of natural deposits
Copper (ppm) Compliance Period 6/1/2023-9/30/2023	AL=1.3 (the 90th percentile must be less than 1.3 ppm)		0.24 ppm at 90th percentile	0.010 - 0.670	No	2023	
			Zero out of 30 samples were found to have lead levels in excess of the lead action level of 15 ppb.				
			Zero out of 30 samples were found to have copper levels in excess of the copper action level of 1.3 ppm.				

UNREGULATED CONTAMINANTS

Organic Contaminants ² 2024		
Contaminant	Average (ppb)	Range of Test Values (ppb)
Bromoform	1.65	0.5 to 2.8
Bromodichloromethane	8	2 to 14
Chloroform	7.5	2 to 13
Dibromochloromethane	6.9	1.8 to 12
Dibromoacetic acid	1.10	nd to 2.2
Dichloroacetic acid	2.1	nd to 4.2
Monobromoacetic acid	nd	nd
Monochloroacetic acid	nd	nd
Trichloroacetic acid	0.8	nd to 1.6
Idlett Hill Treatment Plant New Richmond, Ohio UCMR5³ 2025		
Contaminant	Average (ppb)	Range of Test Values (ppb)
PFBA	0.0008	nd to 0.0016
PFBS	0.0006	nd to 0.0011
PFOA	0.0057	0.0039 to 0.0074
PFOS	0.0007	nd to 0.0013

FOOTNOTES

1 - Distribution Sampling The Idlett and Freedom Crossing Treatment Plants were considered as one distribution system for regulatory purposes by the Ohio EPA during 2025.

2-Unregulated contaminants do not have a set MCL or MCLG limit. The unregulated contaminants listed in the table are unregulated separately but are included in the regulated contaminant table as TTHMs and HAAs. The typical source for the listed unregulated contaminants, as noted in the first table, is a by-product of drinking water chlorination.

3-The Fifth Unregulated Contaminant Rule (UCMR5) for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. In 2025 Tate Monroe Water participated in the fifth round of the Unregulated Contaminant Monitoring Rule (UCMR 5). For a copy of the results please call Kevin Newberry at 513-734-9616.

Table Definitions:

ppm: parts per million corresponding to one minute in two years.

ppb: parts per billion corresponding to one minute in 2,000 years.

MFL: microfibers per liter

pCi/L: Picocuries per liter

nd: not detectable at testing limits

na: not applicable

AL: Action Level, the concentration of a contaminant, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL: Maximum Contaminant Level, the highest level of contaminant that is allowed in drinking water. MCL's are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG: Maximum Contaminant Level Goal, the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL: Maximum Residual Disinfectant Level. The highest level of a disinfectant allowed in drinking water.

MRDLG: Maximum Residual Disinfectant Level Goal. The level of drinking water disinfectant below which there is no known or expected health risk.

Lead Threshold Level: The concentration of lead in an individual tap water sample. The lead threshold level is exceeded at 0.015 milligrams per liter (15 ppb) concentration of lead.